On Using the Observer Design Pattern

Constantin Szallies
Energotec GmbH, Germany
szallies@energotec.de

21. Aug 1997

Abstract

The so-called Observer design pattern is intro-
duced in [1]. The following article describes
this pattern, tries to explain why the pattern
is helpful and takes a closer look at several
consequernces of using the pattern. Code ex-
amples are given in a java-like syntax.

I have tried to avoid repeating things about
the pattern already described in [1], the reader
should be familiar with the particular sec-
tion. You can find an HTML version of
the Observer section under http://www.inf.fu-
berlin.de/ bokowski/Observer.html.

I would like to thank Luther Hamp-
ton (hampton.luther@ist.mds.lmco.com) for
reviewing this paper and for his valuable com-
ments.

1 The Observer Pattern

The Observer design pattern, or more accu-
rately some implementation of this pattern, is
used to assure consistency between different
objects. For example, let the state of an ob-
ject ?’B” depend on the state of an object ”A”.
Whenever the state of object ”A” changes,
?B” has to recompute its state in order to re-
main consistent with ”A”. The observer de-
sign pattern supports such dependencies and
at the same time tries to reduce the coupling

between the object that changes (the subject)
and the object that needs a change notification

(the observer).
Here’s an example of the interfaces in java-
like code:

public abstract interface Subject {

public abstract void addObserver(Observer observer);
public abstract void removeObserver(Observer observer);

public abstract void notify();
b

public abstract class Observer {
public abstract void update();
}

The subject calls its ”notify” operation
whenever it changes. ”Notify” calls the "up-
date” operation on each observer. The ob-
servers then call back to the subject and up-
date themselves accordingly.

An observer may wish to remove itself from
the observer set as part of the ”update”
method. If this is allowed, make sure this re-
moval doesn’t affect the iteration over the ob-
server set. If an iterator object is used, make
sure the iterator can handle modifications to
the set during iteration. If not, make a shallow
copy of the container object first and iterate
over the copy.

The observer design pattern can be used
for purposes other than keeping two objects
consistent. Since the focus of this article is
on maintaining state dependencies by using

the Observer pattern, other uses (for exam-
ple, notifications of events other than ”state
did change”) are not discussed.

2 Why Use the Pattern?

State dependencies (or, more formally, ”con-
sistency conditions”) between objects are un-
favorable for several reasons. If we could
model our problem domain as a set of inde-
pendent classes, we would get a software sys-
tem without state dependencies. Coding and
especially maintaining such a system would be
much easier. The programmer could focus on
single classes only.

One of the basic principles of object-
oriented design is to encapsulate data in ob-
jects. To achieve good encapsulation, data
managed by different objects should be loosely
coupled while data managed within an object
should be highly cohesive [2].

A class with high cohesion should have the
following properties:

1. The object’s data should somehow ”be-
long” together.

2. There should be consistency conditions
between the data.

3. The consistency conditions should be en-
forced by the object’s methods.

4. The data plus the methods which operate
on the data should form one abstraction.

Using too few classes often leads to a situa-
tion violating point four. On the other hand,
if you put everything into the same object, you
end up with a set of global variables and func-
tions and therefore with no encapsulation at

all.

Loose coupling between classes means:

1. There are few consistency conditions be-
tween the data of any two objects.

2. Each class should know few other classes.
If the class knows some other class, it
should use not only a few methods but
the entire abstraction.

Point 2 is interesting: If one part of the class
interface is used in some context and the other
part is only used in some other context, then
the class may contain two different abstrac-
tions. Think about defining two interfaces and
inherit from both of them.

If state dependencies are bad, we could view
our problem domain as a sea of data with a set
of consistency conditions on this data. Then
we could wrap objects around the data in such
a way as to minimize inter-object dependen-
cies. This would result in loosely coupled but
highly coherent classes. Would this strategy
result in "good” design as well? Maybe, but
probably not!

Counsider the following:

e Consistency conditions tend to define a
tightly connected network. However, you
have to partition your data somewhere,
otherwise your classes would be too ”fat”.

o The problem domain and therefore the
consistency conditions tend to change.
You may start with a good design and
end up with garbage.

o In my opinion, data encapsulation is not
a "natural” concept that is experienced
in "real” life. If a modeler tries to model
?things” in the real problem domain as
classes, this may or may not result in a
well-encapsulated design. Modelling the
real world may result in a class diagram/
interaction diagram that is easy for peo-
ple familiar with the problem domain to
understand—but will this lead to code
that is easy to understand and easy to
maintain? This is at least questionable.

It’s sometimes better to break the rules.
Think about a domain object displaying itself
on the screen. Someone familiar with object-
oriented principles but lacking real-world cod-
ing experience will find this natural. And it
is! But real world software uses the Model-
View-Controller (MVC) architecture for this
[3]. MVC separates the responsibilities for
maintaining data and displaying data. This
is done for flexibility and reusability reasons
but it weakens encapsulation and additional
state dependencies, dependencies between the
model and view classes, are added to the sys-
tem.

In [1] the MVC architecture motivates the
Observer pattern. But even if we don’t sepa-
rate data and behavior for this purpose, most
reasonable designs of larger size will include
situations where data and behavior are sepa-
rated. Therefore a well understood approach
to manage state dependencies is valuable.

3 Inter-Object Assertions

B. Meyer introduced so-called assertions in the
programming language Fiffel [5]. Assertions
help to ensure program correctness by letting
the programmer add consistency conditions
for an object’s state and its state transitions.
Even if it’s not easy to capture all correct tran-
sitions by using pre- and post-conditions, as-
sertions are a big help for program correctness
and they add some formal class level documen-
tation as well.

Because of encapsulation, it’s easier to keep
a single object consistent than a set of objects.
But to verify that a system is in a consistent
state, it’s not enough to test each object alone.
A global view onto the system is required — a
problem that shows up in object-oriented test-
ing as well.

Unfortunately, assertions in Eiffel don’t
handle consistency conditions between differ-

ent objects!

If you use Eiffel and assertions, your bugs
will show up as failed assertions at runtime or
as incomnsistencies between objects. If you are
a rocket scientist for the ESA as well, maybe
your next Eiffel application will blow up an Ar-
iane rocket due to some inconsistency between
two objects!

4 The Simple Case

In this section, we focus on the simple case:
One subject with one or more observers, where
the observers are completely isolated from
each other.

If the state of object "B” depends on the
state of object "A”, it should be "B”’s re-
sponsibility to synchronize its state whenever
?A” changes. How does "B” know when ”A”
changes state?

The first possibility is that ” A” notifies "B”
of any change, as in the previous code snip-
pet. The second possibility would be that "B”
checks periodically to see if ”A” has changed.
A third possibility would be that "B” is no-
tified by some other object ”C” and ”C” is
notified using one of the first two methods.

4.1 Notification

In this implementation option, ”A” holds a
pointer to object "B” and whenever "A”
changes state, it calls some notification
method of "B”.

The first problem with this approach is that
” A” must know the interface definition of ”B”.
This reduces reusability of class ”A” because
if you need class "A”, you need class "B” as
well.

If ”A” and "B” are closely related abstrac-
tions, the interface dependency will do no
harm because the granule of reuse is the pack-
age level (packages in the UML sense) and ” A”

and ”B” probably belong to the same package.

If 7A” and "B” are independent abstrac-
tions, we can turn the interface dependency
in the same direction as the state dependency
by using the ”dependency inversion principle”
[4]:

In the subject’s package, we define some in-
terface Observer that represents the abstrac-
tion of some object that is state-dependent on
the subject and that needs a notification of
any state change.

Now let our class ”B” inherit this interface
so that it becomes an observer. ”A” must only
know the ”Observer” interface, not the inter-
face to "B”.

If we view this strategy as an indepen-
dent concept, we get the Observer design pat-
tern. The concept can be supported by some
general-purpose OO library, allowing reuse.
If the update of the observer is not trig-
gered by the subject automatically, we need
an additional interface for a ”subject”. The
only method in this interface is the "update”
method that tells the subject to notify its ob-
servers.

By using the Subject/Observer interfaces,
we can decouple classes representing different
abstractions.

Using this approach and trying to reuse a
class from a different framework may cause
problems. The other class might not be aware
of the ” observer” concept; we may have to sub-
class it to make it ”observer aware”. Depend-
ing on the implementation this might be easy,
hard or impossible. And if it works (how do
you verify that it works without source code
and without overwriting all methods?) perfor-
mance may suffer.

What if the other class uses the pattern but
has defined its own Subject/Observer inter-
faces? Then you have different interfaces for
the same abstraction. Then again you have to
subclass and, if these interfaces don’t diverge
too much, it will work.

This 15 really a problem in it’s own right:
the existence of different interfaces for similar
or equivalent abstractions. Did you ever try
to (re)use two frameworks from two different
vendors that use different container classes?
From my point of view, the "one abstraction —
two interfaces” problem is one of the problems
that makes "reuse in the large” very difficult,
if not tmpossible — at least with the current
object oriented software technology.

4.1.1 State Change Scopes

[1] discusses the following two problems using
the Observer pattern:

1. The subject’s state must be consistent
when the observer queries it.

2. Spurious / redundant updates

If you want your subject to call its "notify”
operation after any state-changing method has
been executed, you may find the following ex-
tension useful to solve the above problems:

public abstract interface SubjectWithChangeScope
extends Subjectd{

public abstract void beginChange();

public abstract void endChange();

}

Two methods were added to support a
?change scope”. Instead of using the "notify”
method, the subject calls "beginChange” on
itself at the beginning of every state modi-
fying method and ”endChange” at the end.
The subject keeps a ”change count” that is
increased for every ”beginChange” and de-
creased for every "endChange” invocation. If
the change count drops to zero, ”endChange”
calls "notify” to trigger the update.

Because the SubjectWithChangeScope in-
herits from Subject, classes using this inter-
face can be used as normal subjects as well.
An invocation of "notify” will force an update
even if there is a change scope pending.

If both change scope methods are declared
public, other objects can access them. This
introduces the risk that the invocations will
not be called symmetrically. If both methods
are defined as protected, maintaining correct
change scopes is the classes and subclasses re-
sponsibility only.

If you use C++ as an implementation lan-
guage, you can use a ”ChangeScope” class to
handle change scopes automatically. The only
purpose of this class is to create and destroy
automatic instances.

e The constructor of the ChangeScope
class has a reference to a SubjectWith-
ChangeScope object as an argument. The
implementation of the constructor calls
”beginChange” on the subject.

o The destructor of the ChangeScope class
calls "endChange” on the subject.

Note that the resulting code is exception safe
[6].

[1] recommends calling update in template
methods to avoid the problem of updates on
inconsistent subjects. This means that you
have to implement two methods for every state
changing operation — one that triggers the
update and one that doesn’t.

With the change scope extension, you can
implement equivalent behavior without dou-
bling the size of your interface. By using the
interface above, you can:

1. Implement new state changing methods

2. Overwrite any state changing method,
calling the overwritten method in the im-
plementation or not.

3. Invoke any sequence of state changing
methods and trigger only one update no-
tification.

4. If both methods are declared public,
clients of the subject can call sev-
eral state-changing methods nested in a
change scope to avoid redundant updates.

If you use C++, just create an automatic
ChangeScope object at the beginning of each
method.

4.1.2 Comparing Subject States

To enhance performance, the subject’s "no-
tify” method should not call "update” on its
observers blindly. Instead, the subject should
first check whether any change to its visible(!)
state has occurred since the last "notify” invo-
cation. If no change has occurred, ”update” is
not invoked.

If the update methods change the subject’s
state as part of its implementation, we are in
trouble:

1. Different observers will see different states
of the same object.

2. Change notifications will be lost

This also may happen if an observer is itself a
subject and there’s a cycle in the dependency
graph. See also section 5.

We could solve the second problem by mak-
ing "notify” itself a state changing operation
with a change scope. Depending on the situ-
ation, this will solve the first problem as well.
There is some chance however that we will in-
troduce an infinite loop were the subject tog-
gles between different states.

I would recommend that changing the sub-
ject’s state as part of the "update” implemen-
tation should be not be allowed.

4.2 Polling

In this implementation option, the observer
?B” queries the subject ”A” to see if there was
a state change.

The advantage of this approach would be
that ”A” is completely independent of "B”.
”A” neither needs an ”Observer/Subject” in-
terface nor a pointer to "B” (or some set of
observers).

In this case, there is no need for the subject
to be "observer-ready”. The subject doesn’t
have to maintain old states or call "notify” in
state changing methods. The responsibility for
consistency shifts completely to the observing
object, increasing the subject’s reusability and
maintainability.

From this point of view, the polling imple-
mentation is more favorable. Two main disad-
vantages of polling come to mind:

1. Who notifies the observer to poll its sub-
ject(s)? How do you assure that this
doesn’t happen too early/too late. If the
subject is polled too early, the observer
may update on an old or illegal state. If
the subject is polled too late, transitions
may be lost.

2. Because the subject is polled even if it
doesn’t change, overhead is introduced.

Since both problems are significant, the
polling option is undesirable for most situa-
tions. But sometimes it’s the better option.

4.2.1 GUI frameworks

Let’s say your observer is some part of a graph-
ical user interface (GUI). A GUI will have
something called either an "event loop” or a
?main loop”. This loop will receive and dis-
patch events form various sources, for example
the mouse, the keyboard, etc.

An object can receive control periodically
by registering itself at the event loop (you can
use the Observer interface for this). After each
processed event, the event loop object calls
?notify” on itself, which in turn calls "update”
on each observer. Each observer then queries

its subject as part of its "update” implemen-
tation and recomputes its state.

Because update is called on each interested
object after every user initiated event, this
method is very powerful for controlling GUI
elements that need to update after the user
has manipulated some part of the interface.

OpenStep [7] uses this method to update
menu items and other elements in GUI-based
applications; for example, in its "update” im-
plementation, the menu cell locates the object
to be called when the menu is activated by
using the Chain-of-Responsibility pattern [1].
This object is asked if the menu cell’s oper-
ation is currently allowed. Depending on the
result, the menu cell enables or disables itself.

The polling implementation of the Ob-
server pattern is a very powerful tool within
the graphical user interface domain because
GUI applications frequently have the follow-
ing characteristics:

1. The observer’s state (the GUI's state) de-
pends on the current state of the subject
but not on it’s state history. In these cases
the observer doesn’t need to update on
every state change of the subject.

2. Because GUI elements need to update
only if the GUI is reactive (can respond to
a new event), the update can be deferred
to the end of the current event. Most of
the time, this deferral is actually desir-

able.

Think of a listbox that is automatically re-
displayed every time an item is added or re-
moved. In the case of automatic redisplay,
adding a sequence of items will result in redun-
dant redisplays. Where there is no automatic
redisplay, then it is the client’s responsibility
to trigger the screen refresh.

An alternative to these two approaches is
the described polling implementation of the

Observer pattern. Here, the client of the list-
box doesn’t have to worry about calling any
redisplay operation. The listbox can redisplay
itself only once after all modifications have fin-
ished. No further modifications can take place
because the current event processing has fin-

ished.

4.2.2 Reducing polling overhead

Because polling introduces a fixed overhead for
each event, the programmer has to assure that
query operations are cheap.

If query operations are too expensive, you
can make them cheaper by maintaining some
additional state in the subject that signals rel-
evant changes.

For example, you can increment a counter
in every state changing method. The observer
can query, store and compare this counter dur-
ing updates. If, for example, the observer
needs to call four methods on the subject to
update itself, you save three method calls if
the subject remains unchanged between two
update notifications.

The disadvantage of this approach is that
you have to modify/subclass the subject in or-
der to create the counter mechanism.

4.3 Polling on demand

In a different implementation approach, the
observer queries the subject whenever the ob-
server itself is queried. If the observer is com-
pletely encapsulated, no one knows whether
the observer is synchronized or not. This
would assure consistency but may increase the
overhead if the observer is queried much more
often than the subject changes state.

In it’s most extreme form, the observer
would not keep any dependent state at all but
would query the subject every time data is
needed. In this case, you don’t need the Ob-
server pattern in the first place, because there

are no state dependencies :-)

5 The Complex Case

If you have an observer that is itself a subject
or if observers influence each other, you have
what is called the complex case.

The following pictures use circles to denote
objects and directed ”is-state-dependent-on”
arcs to denote a state dependency between two
objects.

E=D

If, as in the above picture, "A” is state de-
pendent on ”B” and ”B” is state dependent on
”A”, there is a cycle in the dependency graph.
In this case, even the Observer pattern is not
helpful. The application might hang, since
?A” and ”B” might call each other’s update”
methods recursively. Even if the update cas-
cade can be stopped, resources can be wasted
due to redundant updates.

Moving control to a third object ”C” which
is respousible for preserving counsistency be-
tween ” A” and ”B” will solve this problem, but
now "A” and/or ”B” might not be reusable
without ”C” or without detailed knowledge of
how to preserve consistency between both ob-
jects.

A

Cycles covering more than two objects, as
in the above picture, are even harder to find.

Even if the original design doesn’t contain
such cycles, they are frequently introduced in
the maintainance phase, especially if the im-
plementer changes or the software is poorly
documented.

Big

In the above picture, object "A” depends
on object ”B” and both "A” and ”B” depend
on ”"C”. There is an undirected cycle in de-
pendency graph. Depending on the update
strategy, this could result in incorrect results
and/or redundant updates as well.

For example, if ”C” changes and ” A” is noti-
fied first and the subject ” A” changes its state
as part of the update implementation, ” B” will
receive an update call twice.

In the implementation section of the Ob-
server pattern [1], a ChangeManager is intro-
duced. A ChangeManager is a singleton were
?is-state-dependent-on” pathes can be regis-
tered and were updates are triggered. This
?central” object can indeed handle undirected
cycles because it can overlook the dependency
graph and trigger the updates in a sequence
that results in a minimum number of updates.
If a change scope is introduced, the ChangeM-
anager can further optimize by notifying ob-
servers with multiple subjects only once.

In section 4, I mentioned that calling "up-
date” on an observer should not alter the
subject’s state because otherwise different ob-
servers will see different subject states. Un-
fortunately, an update invocation may not be
?side-effect free” if there is a cycle in the sub-
ject/observer graph.

But even if there is no such cycle, side-effects
may result since some other object may change
the subject during an "update” call. A strictly
cycle free association graph helps in avoiding
these situations. Unfortunately such a strictly
hierarchical design tends to concentrate be-
havior in the "upper” part of the class graph
leaving only data in the leaves.

I can’t offer a general solution to the prob-
lem of cycles (directed or undirected) in the

dependency graph. In my experience, ”sophis-
ticated” ChangeManagers are not often useful,
because they can’t be used in many situations
and better and cheaper specialized solutions
can frequently be found. (If some readers have
had satisfactory experience with ChangeMan-
agers, [would like to hear about it and I would
include the responses in an appendix.)

6 State-Dependencies and
Design

Every larger OO software system has state de-
pendencies between different objects. Some-
times these dependencies are introduced to en-
hance certain software qualities like reusabil-
ity, sometimes they are introduced acciden-
tally or during the maintainance phase.

Because of this, the Observer pattern and its
different implementation forms can help to en-
hance the correctness and quality of the soft-
ware product. But like every powerful tech-
nique, there’s a certain risk of misuse:

o If your classes are closely related abstrac-
tions which are always reused together,
there’s no need to decouple them using
the Observer pattern.

e The Observer pattern introduces an addi-
tional level of indirection and blurs state
dependencies between objects. This in-
creases flexibility but decreases the under-
standability and performance of the code.

References

[1] E. Gamma et al: Design Patterns, Ele-
ments of reusable Object-Oriented Soft-
ware, Addison-Wesley, 1995

[2] A. J. Riel: Object-Oriented Design
Heuristics, Addison-Wesley, 1996

[3] G. E. Krasner et al: A cookbook for
using the model view controller user in-
terface paradigm in Smalltalk-80, JOOP,
Aug/Sep 1988

[4] R. Martin: The Dependency Inversion
Principle, Engineering Notebook, C++
Report, May 1996. Also available under
hitp:/ /wuww.oma.com/PDF/dip.pdf

[5] B. Meyer: Object-ortiented Software
Construction, Prentice Hall, 1988

[6] B. Milewski: Resource management in

C++, JOOP, March/April 1997

[7] Openstep Appkit Reference. Also avail-
able under hitp://devworld.apple.com/
dev/Rhapsody/OPENSTEP /ApplicationKit/
Welcome.html

